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An analytical form of the equation relating particle hydrophobicity, expressed as the so-called contact 
angle, and the maximum size of spherical particle able to float with a bubble is presented. The starting 
equation, which is based on the balance of forces operating at the moment of particle detachment from a 
bubble, can be solved only numerically. In this paper the third-degree polynomial equation is transformed 
into an analytical trigonometric function. Although there are several roots of the equation, practically 
only one is valid for the detachment contact angle calculation.  
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1. INTRODUCTION 

Well designed flotation experiments can be used for determination or estimation of 
different properties of the system. One of them is the so-called contact angle which 
reflects the hydrophobicity of particles. The procedure of contact angle determination 
is based on measuring the maximum size of floating particles and using equations, 
which result from a balance of forces at the moment of particle-bubble rupture. It was 
applied in the particle levitation technique (Li et al., 1993), bubble-capture-by-
particles method (Hanning and Rutter, 1989) and Hallimond cell flotation experiments 
(Drzymala, 1994). The method, also called flotometry (Konovalov and Tikhonov, 
1982; Drzymala and Lekki, 1989), provides a detachment contact angle being 
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equivalent to the advancing contact angle, which can be simply recalculated into the 
equilibrium (Young’s) contact angle. 

The derivation of the equation relating the maximum size of floating spherical 
particle and hydrophobicity of the particle starts with the balance of forces involved in 
the process. Assuming that the main adhesive force is the capillary force Fσ and that 
the detachment occurs when the capillary force reaches maximum Fσ(max) (Scheludko 
et al. 1976, Drzymala, 1994), the balance (Fig. 1) is:  

0aew(max) =−−− FFFFσ      (1) 

where Fw is the weight of particle partially immersed (due to attachment to the bubble) 
in a liquid, Fe denotes the excess force, and Fa stands for different forces generated 
during movement of bubbles with the attached particles, both immersed in the liquid 
medium. 

Another assumption regarding the adhesive forces in the balance was proposed by 
Nguyen (2003, 2004). Since it is based on non-existing forces such as the weight of a 
completely immersed particle, this approach does not seem to be correct. 

The maximum capillary force at the moment of particle detachment from the 
bubble, Fσ(max), is expressed by the equation: 

)cos1( dmax(max)σ θσπ −= rF ,    (2) 

where σ is liquid surface tension, rmax maximum radius of floating spherical particle, θd 
angle of detachment of particles from bubble (equivalent to the advancing contact 
angle) and π is 3.14. 

The weight of the particle partially immersed in water Fw is in fact equal to Fg − Fb, 
where Fg is the gravity force and Fb is the buoyancy:  
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where ρw is density of liquid, ρp density of particle, g acceleration due to gravity while 
Rr ≤max . 

The excess force Fe is defined as (Fp − Fh), where Fp is an additional pressure 
inside the bubble and Fh stands for the hydrostatic pressure and is given by: 

( )( )gRRrFFF wd
2

maxhpe cos1 ρσθπ −−=−= ,  (4) 

where R is bubble radius.  
There are also hydrodynamic forces in the system. Their list includes inertia, drag, 

diffusive, and other forces (Morris and Matthesius, 1988). For practical purpose it was 
proposed by Schulze (1993), and later by Ralston (Gontijo et al., 2007), to combine 
the hydrodynamic forces into one effective acceleration force, Fa. The mathematical 
formula for the effective acceleration force is not well established. Gontijo et al. 
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(2007) used: 
arF p

3
a 3

4 ρπ=       (5) 

where a is the acceleration of particle in the external flow field. Another expression in 
which ρp−ρw instead of ρp in Eq. (5) was used by Mitrofanov et al. (1970) while Koch 
and Noworyta (1992) used ρp+fρw instead of ρp in Eq. (5) (where f is a constant). 
Since the acceleration force does not depend on contact angle, the inversion of the 
numerical equation into the analytical form does not require, during the derivation, the 
knowledge of the detailed expression for Fa. 
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Fig. 1. Particle-bubble aggregate at the moment of particle detachment when the contact angle 

becomes detachment angle θd. Fσ denotes capillary force, α central angle, β angular inclination of 
meniscus at the three-phase contact, ϕ central angle at the bubble center, Rc bubble curvature, rp=rmax. 

Other symbols are explained in the text 

Taking into account expressions for appropriate forces one gets the following 
equation: 
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Analytical solution of Eq. (6) for rmax can be easily obtained since it becomes a 
quadratic equation of rmax after division by rmax. On the other hand is it much more 
difficult to solve Eq. (6) for θd because it assumes a cubic form. The solution of Eq. 
(6) is presented in this paper.  
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2. SOLUTION 

In Eq. (6) the detachment angle occurs as θd and θd /2. Therefore, we have to use 
the double-angle formula for cosine, cos θd = 2cos2(θd /2) −1. Substituting this into Eq. 
(6), we obtain a cubic equation: 

02333 23 =+−−+ BAXXAX ,   (7) 

where 
)2/cos( dθ=X    (0 < X < 1),  (8) 
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The ranges of X, A and B are due to 0˚< θd <180˚, rmax ≤ R and ρw < ρp, respectively. 
Analytical solutions of cubic equations are known, therefore we are able to solve Eq. 
(7) for X and then calculate θd, because θd = 2arccosX. 

To eliminate the second-degree term in Eq. (7), we put 

AYX −= ,      (11) 

and next we get a reduced cubic equation: 

( ) ( ) 0213 323 =+++− BAYAY .   (12) 

To solve Eq. (12) one can use either algebraic or trigonometric solution. Since both 
provide the same results, only the algebraic path is presented in this paper. 

Equation (12) can be solved by a well-known cubic formula (Bewersdorff, 2006; 
Cox, 2004; Dickson, 1914; King, 1996; Rotman, 2000; Rotman, 2007; Uspensky, 
1948): 
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where j=1, 2, 3, and D denotes the discriminant, in our case defined as: 

( ) ( )3223 1+−+= ABAD ,    (14) 

which can be either zero or positive, or even negative. Using Eq. (13), taking into 
account the signs of D, we have 3⋅3, that is 9, solutions. 

For D = 0 or B = (A2+1)3/2−A3, it is known that there are three real roots of a 
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reduced cubic equation and at least two of them are equal. The roots of Eq. (7) are 
given by: 

AAX −+−= 12 2
1Z ,    (15) 

AAXX −+== 12
3Z2Z ,    (16) 

where Z denotes that D is zero. XZ1 is negative while XZ2 and XZ3 are within the range 
of 0<X<1 (Fig. 2). 

For D > 0 or B > (A2+1)3/2−A3, a reduced cubic equation has one real root and two 
imaginary roots. The real root of Eq. (7), in which we are interested, is given by: 

( ) ( ) ( ) ( ) AABABAABABAX −+−+++−+−+−+−= 3 322333 32233
1P 11   (17) 

where P denotes that D is positive. The expression for XP1 clearly indicates that XP1 is 
negative and should be rejected. Discussion on the imaginary roots XP2 and XP3 is 
omitted. 

For D < 0 (called the casus irreducibilis) or B < (A2+1)3/2−A3, there are three 
distinct real roots and Eq. (13) leads to the following equation (Bewersdorff, 2006; 
Dickson, 1914; King, 1996; Uspensky, 1948): 
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where N denotes that D is negative, and φ  is defined as: 
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As φ  is in the second quadrant, it can be shown that XN2: 
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is outside the range of 0<X<1. XN1 and XN3 are: 
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and their boundary is XZ2 or XZ3. XN1 is always in the range of 0 < X < 1 and provides 
detachment angles between 0° and 180°. On the other hand XN3 yields different values 
from XN1 for a given set of A and B, and may be in the range of 0 < X < 1, or X < 
51/2−2 precisely, providing detachment angles greater than 152.69°. Such a large 
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contact angle does not occur in normal situations (e.g. Chau, 2009). Therefore XN3 

should be excluded and only equation for XN1 taken into consideration. 
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Fig. 2. Relationship between real roots X of the considered cubic equation and parameters A and B. 

The arccosine scale on the right-hand side indicates how X corresponds to θd. For clarity the graph was 
truncated at A=10, though in practical applications A can reach 20,000 and more 

A final solution of the cubic equation (Eq. (7)) was obtained by including Eq. (16) 
into Eq. (21) combined with Eq. (19): 
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where X, A and B are defined by Eqs. (8–10), respectively. The third term on the right-
hand side of Eq. (10) is neglected in the case of “static” flotation. 

For the particle size and hydrophobicity encountered in flotation parameter B is 
usually smaller than (A2+1)3/2−A3 and thus the analytical form of the flotometric 
equation for spherical particles is practically given only by Eq. (23).  

Besides the cubic formula, there is a trigonometric solution of the cubic equation 
(Bewersdorff, 2006; Birkhoff and Mac Lane, 1965; Cox, 2004; Dickson, 1914; 
Rotman, 2000; Rotman, 2007; Tignol, 1988). It provides identical results and 
therefore is not included in this paper. 
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3. CONCLUSION 

The flotometric equation delineates flotation and relates the maximum size of 
floating particle with its hydrophobicity expressed as detachment contact angle. The 
flotometric equation is based on the balance of forces involved in flotation and can be 
utilized after solving it by iterative methods. In this work the flotometric equation, 
being a third-degree polynomial of cos(θd/2), was transformed into analytical form 
which is much easier to handle. For the particle size and hydrophobicity encountered 
in flotation parameter B is usually smaller than (A2+1)3/2−A3 and thus the final form of 
the equation relating detachment contact angle and the maximum size of floating 
particle is given by the equation being a combination of Eqs (23) and (8–10) 
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This analytical equation can be used for many further applications, especially 
involving derivations. 
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W pracy została przedstawiona analityczna forma równania wiążącego maksymalny rozmiar 
flotującego ziarna i jego hydrofobowość, wyrażoną jako kąt zwilżania. Równanie to, zwane 
fotometrycznym, oparte jest na bilansie sił działających w układzie ziarno-pęcherzyk powietrza-ciecz 
w momencie zerwania ziarna i do tej pory rozwiązywane było tylko numerycznie. Rozpatrywane 
równanie fotometryczne, posiadające postać wielomianu trzeciego stopnia, zostało przedstawione jako 
funkcja trygonometryczna, dla której istnieje tylko jedno rozwiązane. 

słowa kluczowe: flotacja, flotometria, kąt zwilżania, ziarno grube, wielomian, równanie kubiczne 


